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Plasma Accelerators Offer the Possibility of 
High-Energy Particle Beams at Affordable Scale

W=e Ez Lint

• Conventional RF accelerators: 10-100 MV/m, 100-1000 m for 10 GeV
• Laser-plasma based: 10 - 100 GV/m, 0.1 - 1 m for 10 GeV

Laser excites plasma wave: Ez > 10 GV/m
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Optical injection

• Self-modulated laser wakefield
• Colliding pulse injector



Impact and status of laser driven accelerator R&D

• Impact:

• Compact GeV-class accelerator: applications in HEP and many areas of science

• Laser technology for high energy physics

• Training ground for future accelerator physicists

• Present status (at LBNL and/or other Laboratories)
• Ultra-high gradient (10-100 GV/m): tens of MeV in mm-scale length accelerator

Note: highest gradient to-date with beam based is 100 MeV/m

• Femtosecond electron bunches (coherent THz emission) 

• High charge yield (multi-nC) 

• Divergence x spot size at exit of accelerator < 0.1 mm-mrad 

• Open questions

• Beam quality: is collider-relevant possible ? 

• Scalability: can plasma channels guide high intensity laser pulses over m-scale?

• Efficiency: will lasers reach required wall-plug efficiency?



l’OASIS: An unparalleled facility 
dedicated to exploring laser acceleration

100 TW Ti:sapphire
(under construction) 

Shielded target room10 TW Ti:sapphire

> 5  nC/bunch
10 - 20 fs pulse
at up to 10 Hz

@ 100 GeV/m

L’OASIS: Lasers Optical Accelerator Systems Integrated Studies



Development of > 1 GeV module requires 
100 TW class laser system

Concept: Two stage all-optical accelerator module
stage 1: optical injector stage 2: channel

Phase I:     SM-LWFA
Phase II:   Colliding pulse Plasma channel

3.6 GeV
e- beam

< 1mm < 30 cm

Energy Gain:
Laser Pulse:
Plasma:

∆W = 3.6 GeV, Epeak = 23 GV/m
3.9 J,  44 TW,  90 fs (2x1018 W/cm-2, λ = 0.8 µm, rs = 36 µm)
Lchannel = 29 cm,   n = 2.1 x 1017 cm-3

Note: 100 pC at 3.6 GeV = 0.35 J
•Challenges: 

• Controlled injection
• Long scale (10 - 100 cm) length plasma channel
• Beam properties: energy spread, emittance, charge



R&D program aims at developing physics 
and technology for future accelerators

• Controlling accelerator performance

– Charge, energy (mean and spread), emittance

– Laser power, plasma profile

• Development of 1 GeV module

– Injector

– Accelerating structure- plasma channel

– Staging

• Modeling and simulation of non-linear physics
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Novel diagnostics are being developed
for laser driven accelerators 

• Powerful beam diagnostic:
• Radiation carries signature of beam

• Energy
• Charge
• Bunch length
• Emittance

Laser

Gas

Gas jet nozzle

e-

Plasma
channel

THz

•Plasma edge becomes equivalent to
metal foil, i.e. transition radiator

•Ultrashort bunch produces coherent 
THz signal

I2 scaling=coherence

W.P. Leemans et al., submitted to Nature



Accelerator control: laser pulse shape
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•Pulse shape depends on compressor position

0

1

2

3

4

5

40

60

80

100

120

140

160

180

-800 -600 -400 -200 0 200 400 600
la

se
r F

W
H

M
 p

ul
se

le
ng

th
 [f

s]

C
ha

rg
e 

[n
C

]

compressor position [microns]

Asymmetry in electron yield vs. pulse duration

W.P. Leemans et al., PRL 89, 174802 (2002).



Accelerator control: minimizing energy spread 
via laser triggered injection

Colliding pulse injection

Electrons

Laser beams

Plasma wake phase
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• Femtosecond bunches
• Few % energy spread
• 1-10 pC/bunch
• 40 MeV in 1 mm
• Emittance < 1 micron

E.Esarey et al., PRL’97
Drive beam

Coll. beam
Gasjet

Top view

• Observed enhancement of yield with 2 pulses



Accelerator control: plasma shape and profile

• Plasma channel: structure for guiding laser and supporting wake
• Hydrodynamically formed in gas jet

Ignitor

Heater
Drive 
pulse

Volfbeyn, Esarey and Leemans, Phys. Plasmas ‘99

Guiding

Mode
Images
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Guided 1017W/cm2

over 5-10 ZR

Development
• Slit nozzle
• Piezo+microvalves

Testing
• Gas jet test stand
• Experiment

Design
• 1 and 3D model
• SciDAC

Design
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Laser facilities above 10 TW worldwide

:100TW, 10 Hz
:>10TW, <<10 Hz
:Beam driven• DOE-HEP Investments in advanced accelerator facilities

– Beam driven: ATF-BNL, AWA-ANL, A0-FNAL, UCLA, SLAC-FFTB/NLCTA
Wide parameter range

– Laser-driven UT Austin, UMaryland, NRL, UCLA-Neptune, Stanford, LBNL

• Only facility with > 10 TW, 10 Hz laser system dedicated to HEP is at LBNL
• Major upgrade to 100 TW, 10 Hz facility 

Initiated by BER but funding cut in FY04



Advanced Accelerator program at LBNL

• Unique, state-of-the-art, world-class facility:
• Multi-beam 10 TW, 10 Hz system
• Upgrade to 100 TW, 10 Hz in progress. 
• Radiation shielded experimental areas, remote operation, control room

• Development of 1 GeV in 10 cm laser driven accelerator
• Laser injection methods for high quality e-beams: colliding pulse
• Long plasma channels for high energy
• Novel diagnostics (bunch duration)

• Comprehensive:
• Experiment-Theory-Simulation
• Internal and external collaborations (e.g. SciDAC)

•World-class research team:
• Refereed Journal Publications (1996-2002): 52 total (13 PRL, 1 Science)

Only 100 TW, 10 Hz class facility in the world equipped for and dedicated to 
laser accelerator research

Such a facility is essential for 1 GeV laser accelerator R&D 



Near and long term projection

FY03 FY04 FY05 FY06 FY07

Colliding pulse, laser wakefield injector

Channel guiding: 1 cm Channel guiding: 10 cm Channel development

Injector+channel: 0.1 - 1 GeV

Injector+staged channel: > 1 GeV

Laser upgrade: 100 TW High average power, high efficiency laser development

FY05 FY10 FY15 FY20

Channel development

1-10 GeV booster module

High average power, high efficiency laser development

Module development and staging to high energies



L’OASIS Experimental Highlights with HEP relevance

• Development of state-of-the-art laser acceleration facility and Beam Test Facility
• Laser-based diagnostic for relativistic electron beams using Thomson scattering

• W.P. Leemans et al., Phys. Rev. Lett. 77, 4182 (1996)
• Return current effects in plasma lenses for relativistic electron beams

• R. Govil et al., Phys. Rev. Lett. 83, 3202 (1999)
• Laser channel production and guiding of > 1017 W/cm2 using ignitor-heater method

• P. Volfbeyn et al., Phys. Plasmas 6, 2269 (1999)
• Optical transition radiation to diagnose 30 GeV electron beams

• P. Catravas et al., Phys. Plasmas 9, 2428 (2002)
• Cerenkov radiation from a 30 GeV beam to probe plasmas

• P. Catravas et al., Phys. Rev. E 64, 046502 (2001)
• Fluctuational interferometry for measuring femtosecond bunches

• P. Catravas et al., Phys. Rev. Lett. 82, 5261 (1999)
• Betatron oscillation of a 30 GeV beam propagating through a 1.4 m plasma

• C. Clayton et al., Phys. Rev. Lett. 88, 154801 (2002)
• Gamma-neutron activation from a laser-driven accelerator

• W.P. Leemans et al., Phys. Plasmas 8, 2510 (2001)
• Laser pulse shape effect on electron yield from a laser-driven accelerator

• W.P. Leemans et al., Phys. Rev. Lett. 89, 174802 (2002)



L’OASIS Theory Highlights with HEP relevance

• Colliding laser pulse method for electron injection
• E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B. Schroeder et al.,PRE 59, 6037 (1999)

• Non-paraxial propagation of high intensity, short laser pulses in plasma channels
• E. Esarey et al., Phys. Rev. Lett. 84, 3081 (2000)

• Electron injection in wakefields by a density transition
• H. Suk et al., Phys. Rev. Lett. 86, 1011 (2001)

• Particle-in-cell code including the effects of ionization
• D. Bruhwiler et al., Phys. Rev. Spec. Topics Accel. Beams 4, 101302 (2001)

• Semi-analytic code for space charge effects in ultrashort electron bunches
• G. Fubiani et al., AIP Conf. Proc. 569, 423 (2001)

• First fully nonlinear Maxwell-fluid code for laser plasma interactions
• B. Shadwick et al., IEEE Trans. Plasma Sci. 30, 38 (2002)

• Synchrotron radiation from electron beams in plasma focusing channels
• E. Esarey et al., Phys. Rev. E 65, 056505 (2002)

• Two-stage laser wakefield accelerator
• A. Reitsma et al., Phys. Rev. Spec. Topics Accel. Beams 5, 051302 (2002)

• Frequency chirp and pulse shape effects on self-modulated lwfa’s
• C.B. Schroeder et al., Phys. Plasmas, Jan (2003)

• Ionization effect in the plasma afterburner concept
• D. Bruhwiler., Phys. Plasmas, submitted (2002)
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